Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Mol Autism ; 15(1): 19, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711098

RESUMEN

BACKGROUND: Most children with Autism Spectrum Disorder (ASD) have co-occurring language impairments and some of these autism-specific language difficulties are also present in their non-autistic first-degree relatives. One of the possible neural mechanisms associated with variability in language functioning is alterations in cortical gamma-band oscillations, hypothesized to be related to neural excitation and inhibition balance. METHODS: We used a high-density 128-channel electroencephalography (EEG) to register brain response to speech stimuli in a large sex-balanced sample of participants: 125 youth with ASD, 121 typically developing (TD) youth, and 40 unaffected siblings (US) of youth with ASD. Language skills were assessed with Clinical Evaluation of Language Fundamentals. RESULTS: First, during speech processing, we identified significantly elevated gamma power in ASD participants compared to TD controls. Second, across all youth, higher gamma power was associated with lower language skills. Finally, the US group demonstrated an intermediate profile in both language and gamma power, with nonverbal IQ mediating the relationship between gamma power and language skills. LIMITATIONS: We only focused on one of the possible neural contributors to variability in language functioning. Also, the US group consisted of a smaller number of participants in comparison to the ASD or TD groups. Finally, due to the timing issue in EEG system we have provided only non-phase-locked analysis. CONCLUSIONS: Autistic youth showed elevated gamma power, suggesting higher excitation in the brain in response to speech stimuli and elevated gamma power was related to lower language skills. The US group showed an intermediate pattern of gamma activity, suggesting that the broader autism phenotype extends to neural profiles.


Asunto(s)
Trastorno del Espectro Autista , Electroencefalografía , Ritmo Gamma , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Masculino , Femenino , Adolescente , Niño , Lenguaje , Familia , Hermanos
2.
Commun Biol ; 7(1): 485, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649483

RESUMEN

Converging evidence implicates disrupted brain connectivity in autism spectrum disorder (ASD); however, the mechanisms linking altered connectivity early in development to the emergence of ASD symptomatology remain poorly understood. Here we examined whether atypicalities in the Salience Network - an early-emerging neural network involved in orienting attention to the most salient aspects of one's internal and external environment - may predict the development of ASD symptoms such as reduced social attention and atypical sensory processing. Six-week-old infants at high likelihood of developing ASD based on family history exhibited stronger Salience Network connectivity with sensorimotor regions; infants at typical likelihood of developing ASD demonstrated stronger Salience Network connectivity with prefrontal regions involved in social attention. Infants with higher connectivity with sensorimotor regions had lower connectivity with prefrontal regions, suggesting a direct tradeoff between attention to basic sensory versus socially-relevant information. Early alterations in Salience Network connectivity predicted subsequent ASD symptomatology, providing a plausible mechanistic account for the unfolding of atypical developmental trajectories associated with vulnerability to ASD.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Lactante , Masculino , Femenino , Trastorno del Espectro Autista/fisiopatología , Imagen por Resonancia Magnética , Red Nerviosa/fisiopatología , Atención/fisiología , Encéfalo/fisiopatología , Encéfalo/crecimiento & desarrollo , Vías Nerviosas/fisiopatología
3.
Front Psychiatry ; 15: 1337921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590791

RESUMEN

The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.

4.
Psychiatry Res Neuroimaging ; 339: 111791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359709

RESUMEN

Dimensional models of psychopathology may provide insight into mechanisms underlying comorbid depression and anxiety and improve specificity and sensitivity of neuroanatomical findings. The present study is the first to examine neural structure alterations using the empirically derived Tri-level Model. Depression and anxiety symptoms of 269 young adults were assessed using the Tri-level Model dimensions: General Distress (transdiagnostic depression and anxiety symptoms), Anhedonia-Apprehension (relatively specific depression symptoms), and Fears (specific anxiety symptoms). Using structural MRI, gray matter volumes were extracted for emotion generation (amygdala, nucleus accumbens) and regulation (orbitofrontal, ventrolateral, and dorsolateral prefrontal cortex) regions, often implicated in depression and anxiety. Each Tri-level symptom was regressed onto each region of interest, separately, adjusting for relevant covariates. General Distress was significantly associated with smaller gray matter volumes in bilateral orbitofrontal cortex and ventrolateral prefrontal cortex, independent of Anhedonia-Apprehension and Fears symptom dimensions. These results suggests that prefrontal alterations are associated with transdiagnostic dysphoric mood common across depression and anxiety, rather than unique symptoms of these disorders. Additionally, no regions of interest were associated with Anhedonia-Apprehension or Fears, highlighting the importance of studying transdiagnostic features of depression and anxiety. This has implications for understanding mechanisms of and interventions for depression and anxiety.


Asunto(s)
Depresión , Sustancia Gris , Adulto Joven , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Depresión/diagnóstico por imagen , Depresión/complicaciones , Anhedonia , Ansiedad/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología
5.
Brain Behav Immun ; 117: 215-223, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244947

RESUMEN

BACKGROUND: Severe, chronic stress during childhood accentuates vulnerability to mental and physical health problems across the lifespan. To explain this phenomenon, the neuroimmune network hypothesis proposes that childhood stressors amplify signaling between peripheral inflammatory cells and developing brain circuits that support processing of rewards and threats. Here, we conducted a preliminary test of the basic premises of this hypothesis. METHODS: 180 adolescents (mean age = 19.1 years; 68.9 % female) with diverse racial and ethnic identities (56.1 % White; 28.3 % Hispanic; 26.1 % Asian) participated. The Childhood Trauma Interview was administered to quantify early adversity. Five inflammatory biomarkers were assayed in antecubital blood - C-reactive protein, tumor necrosis factor-a, and interleukins-6, -8, and -10 - and were averaged to form a composite score. Participants also completed a functional MRI task to measure corticostriatal responsivity to the anticipation and acquisition of monetary rewards. RESULTS: Stress exposure and corticostriatal responsivity interacted statistically to predict the inflammation composite. Among participants who experienced major stressors in the first decade of life, higher inflammatory activity covaried with lower corticostriatal responsivity during acquisition of monetary rewards. This relationship was specific to participants who experienced major stress in early childhood, implying a sensitive period for exposure, and were evident in both the orbitofrontal cortex and the ventral striatum, suggesting the broad involvement of corticostriatal regions. The findings were independent of participants' age, sex, racial and ethnic identity, family income, and depressive symptoms. CONCLUSIONS: Collectively, the results are consistent with hypotheses suggesting that major stress in childhood alters brain-immune signaling.


Asunto(s)
Experiencias Adversas de la Infancia , Adolescente , Preescolar , Femenino , Humanos , Masculino , Adulto Joven , Encéfalo , Proteína C-Reactiva , Hispánicos o Latinos , Renta , Blanco , Asiático , Recompensa , Estrés Psicológico
6.
J Neurosci Res ; 102(1): e25250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840458

RESUMEN

Sensory over-responsivity (SOR) is a prevalent cross-diagnostic condition that is often associated with anxiety. The biological mechanisms underlying the co-occurrence of SOR and anxiety symptoms are not well understood, despite having important implications for targeted intervention. We therefore investigated the unique associations of SOR and anxiety symptoms with physiological and neural responses to sensory stimulation for youth with anxiety disorders (ANX), autism spectrum disorder (ASD), or typical development (TD). Age/IQ-matched youth aged 8-18 years (22 ANX; 30 ASD; 22 TD) experienced mildly aversive tactile and auditory stimuli during functional magnetic resonance imaging and then during skin conductance response (SCR) and heart rate (HR) measurements. Caregivers reported on participants' SOR and anxiety symptoms. ASD/ANX youth had elevated SOR and anxiety symptoms compared to TD. ASD/ANX youth showed similar, heightened brain responses to sensory stimulation compared to TD youth, but brain responses were more highly related to SOR symptoms in ASD youth and to anxiety symptoms in ANX youth. Across ASD/ANX youth, anxiety symptoms uniquely related to greater SCR whereas SOR uniquely related to greater HR responses to sensory stimulation. Behavioral and neurobiological over-responsivity to sensory stimulation was shared across diagnostic groups. However, findings support SOR and anxiety as distinct symptoms with unique biological mechanisms, and with different relationships to neural over-reactivity dependent on diagnostic group. Results indicate a need for targeted treatment approaches.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Adolescente , Ansiedad , Trastornos de Ansiedad , Corteza Prefrontal , Imagen por Resonancia Magnética
7.
Mol Autism ; 14(1): 38, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37817282

RESUMEN

BACKGROUND: Sensory over-responsivity (SOR) is an impairing sensory processing challenge in autism spectrum disorder (ASD) which shows heterogenous developmental trajectories and appears to improve into adulthood in some but not all autistic individuals. However, the neural mechanisms underlying interindividual differences in these trajectories are currently unknown. METHODS: Here, we used functional magnetic resonance imaging (fMRI) to investigate the association between age and neural activity linearly and nonlinearly in response to mildly aversive sensory stimulation as well as how SOR severity moderates this association. Participants included 52 ASD (14F) and 41 (13F) typically developing (TD) youth, aged 8.6-18.0 years. RESULTS: We found that in pre-teens, ASD children showed widespread activation differences in sensorimotor, frontal and cerebellar regions compared to TD children, while there were fewer differences between ASD and TD teens. In TD youth, older age was associated with less activation in the prefrontal cortex. In contrast, in ASD youth, older age was associated with more engagement of sensory integration and emotion regulation regions. In particular, orbitofrontal and medial prefrontal cortices showed a nonlinear relationship with age in ASD, with an especially steep increase in sensory-evoked neural activity during the mid-to-late teen years. There was also an interaction between age and SOR severity in ASD youth such that these age-related trends were more apparent in youth with higher SOR. LIMITATIONS: The cross-sectional design limits causal interpretations of the data. Future longitudinal studies will be instrumental in determining how prefrontal engagement and SOR co-develop across adolescence. CONCLUSIONS: Our results suggest that enhanced recruitment of prefrontal regions may underlie age-related decreases in SOR for a subgroup of ASD youth.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adolescente , Niño , Humanos , Trastorno Autístico/diagnóstico por imagen , Estudios Transversales , Corteza Prefrontal/diagnóstico por imagen , Cerebelo , Imagen por Resonancia Magnética/métodos
8.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37742646

RESUMEN

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Asunto(s)
Enfermedad de Alzheimer , Insulinas , Humanos , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/complicaciones , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Amiloide , Proteínas Amiloidogénicas , Dieta Baja en Carbohidratos , Carbohidratos , Atrofia/complicaciones
9.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645883

RESUMEN

Introduction: Threat learning and extinction processes are thought to be foundational to anxiety and fear-related disorders. However, the study of these processes in the human brain has largely focused on a priori regions of interest, owing partly to the ease of translating between these regions in human and non-human animals. Moving beyond analyzing focal regions of interest to whole-brain dynamics during threat learning is essential for understanding the neuropathology of fear-related disorders in humans. Methods: 223 participants completed a 2-day Pavlovian threat conditioning paradigm while undergoing fMRI. Participants completed threat acquisition and extinction. Extinction recall was assessed 48 hours later. Using a data-driven group independent component analysis (ICA), we examined large-scale functional connectivity networks during each phase of threat conditioning. Connectivity networks were tested to see how they responded to conditional stimuli during early and late phases of threat acquisition and extinction and during early trials of extinction recall. Results: A network overlapping with the default mode network involving hippocampus, vmPFC, and posterior cingulate was implicated in threat acquisition and extinction. Another network overlapping with the salience network involving dACC, mPFC, and inferior frontal gyrus was implicated in threat acquisition and extinction recall. Other networks overlapping with parts of the salience, somatomotor, visual, and fronto-parietal networks were involved in the acquisition or extinction of learned threat responses. Conclusions: These findings help confirm previous investigations of specific brain regions in a model-free fashion and introduce new findings of spatially independent networks during threat and safety learning. Rather than being a single process in a core network of regions, threat learning involves multiple brain networks operating in parallel coordinating different functions at different timescales. Understanding the nature and interplay of these dynamics will be critical for comprehensive understanding of the multiple processes that may be at play in the neuropathology of anxiety and fear-related disorders.

10.
Neuroimage Clin ; 39: 103458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37421927

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and atrophy in the medial temporal lobe (MTL) and subsequent brain regions. Structural magnetic resonance imaging (sMRI) has been widely used in research and clinical care for diagnosis and monitoring AD progression. However, atrophy patterns are complex and vary by patient. To address this issue, researchers have made efforts to develop more concise metrics that can summarize AD-specific atrophy. Many of these methods can be difficult to interpret clinically, hampering adoption. In this study, we introduce a novel index which we call an "AD-NeuroScore," that uses a modified Euclidean-inspired distance function to calculate differences between regional brain volumes associated with cognitive decline. The index is adjusted for intracranial volume (ICV), age, sex, and scanner model. We validated AD-NeuroScore using 929 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, with a mean age of 72.7 years (SD = 6.3; 55.1-91.5) and cognitively normal (CN), mild cognitive impairment (MCI), or AD diagnoses. Our validation results showed that AD-NeuroScore was significantly associated with diagnosis and disease severity scores (measured by MMSE, CDR-SB, and ADAS-11) at baseline. Furthermore, baseline AD-NeuroScore was associated with both changes in diagnosis and disease severity scores at all time points with available data. The performance of AD-NeuroScore was equivalent or superior to adjusted hippocampal volume (AHV), a widely used metric in AD research. Further, AD-NeuroScore typically performed as well as or sometimes better when compared to other existing sMRI-based metrics. In conclusion, we have introduced a new metric, AD-NeuroScore, which shows promising results in detecting AD, benchmarking disease severity, and predicting disease progression. AD-NeuroScore differentiates itself from other metrics by being clinically practical and interpretable.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/patología , Lóbulo Temporal/patología , Imagen por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Atrofia/diagnóstico por imagen , Atrofia/patología , Progresión de la Enfermedad
11.
Neuroimage ; 276: 120192, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37247763

RESUMEN

Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer's disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity.


Asunto(s)
Enfermedades Cardiovasculares , Conectoma , Persona de Mediana Edad , Humanos , Anciano , Adulto , Anciano de 80 o más Años , Conectoma/métodos , Estudios Transversales , Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen por Resonancia Magnética
12.
Cereb Cortex ; 33(12): 8075-8086, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37005061

RESUMEN

Despite growing evidence implicating thalamic functional connectivity atypicalities in autism spectrum disorder (ASD), it remains unclear how such alterations emerge early in human development. Because the thalamus plays a critical role in sensory processing and neocortical organization early in life, its connectivity with other cortical regions could be key for studying the early onset of core ASD symptoms. Here, we investigated emerging thalamocortical functional connectivity in infants at high (HL) and typical (TL) familial likelihood for ASD in early and late infancy. We report significant thalamo-limbic hyperconnectivity in 1.5-month-old HL infants, and thalamo-cortical hypoconnectivity in prefrontal and motor regions in 9-month-old HL infants. Importantly, early sensory over-responsivity (SOR) symptoms in HL infants predicted a direct trade-off in thalamic connectivity whereby stronger thalamic connectivity with primary sensory regions and basal ganglia was inversely related to connectivity with higher order cortices. This trade-off suggests that ASD may be characterized by early differences in thalamic gating. The patterns reported here could directly underlie atypical sensory processing and attention to social vs. nonsocial stimuli observed in ASD. These findings lend support to a theoretical framework of ASD whereby early disruptions in sensorimotor processing and attentional biases early in life may cascade into core ASD symptomatology.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Lactante , Imagen por Resonancia Magnética , Tálamo , Ganglios Basales , Probabilidad
13.
Genome Biol ; 24(1): 42, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882872

RESUMEN

BACKGROUND: Increased expression of the complement component 4A (C4A) gene is associated with a greater lifetime risk of schizophrenia. In the brain, C4A is involved in synaptic pruning; yet, it remains unclear the extent to which upregulation of C4A alters brain development or is associated with the risk for psychotic symptoms in childhood. Here, we perform a multi-ancestry phenome-wide association study in 7789 children aged 9-12 years to examine the relationship between genetically regulated expression (GREx) of C4A, childhood brain structure, cognition, and psychiatric symptoms. RESULTS: While C4A GREx is not related to childhood psychotic experiences, cognition, or global measures of brain structure, it is associated with a localized reduction in regional surface area (SA) of the entorhinal cortex. Furthermore, we show that reduced entorhinal cortex SA at 9-10 years predicts a greater number and severity of psychosis-like events at 1-year and 2-year follow-up time points. We also demonstrate that the effects of C4A on the entorhinal cortex are independent of genome-wide polygenic risk for schizophrenia. CONCLUSIONS: Our results suggest neurodevelopmental effects of C4A on childhood medial temporal lobe structure, which may serve as a biomarker for schizophrenia risk prior to symptom onset.


Asunto(s)
Encéfalo , Cognición , Complemento C4 , Humanos , Complemento C4/genética , Trastornos Mentales/genética , Fenotipo
14.
Cereb Cortex ; 33(11): 6928-6942, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36724055

RESUMEN

The human brain is active at rest, and spontaneous fluctuations in functional MRI BOLD signals reveal an intrinsic functional architecture. During childhood and adolescence, functional networks undergo varying patterns of maturation, and measures of functional connectivity within and between networks differ as a function of age. However, many aspects of these developmental patterns (e.g. trajectory shape and directionality) remain unresolved. In the present study, we characterised age-related differences in within- and between-network resting-state functional connectivity (rsFC) and integration (i.e. participation coefficient, PC) in a large cross-sectional sample of children and adolescents (n = 628) aged 8-21 years from the Lifespan Human Connectome Project in Development. We found evidence for both linear and non-linear differences in cortical, subcortical, and cerebellar rsFC, as well as integration, that varied by age. Additionally, we found that sex moderated the relationship between age and putamen integration where males displayed significant age-related increases in putamen PC compared with females. Taken together, these results provide evidence for complex, non-linear differences in some brain systems during development.


Asunto(s)
Encéfalo , Conectoma , Masculino , Niño , Femenino , Humanos , Adolescente , Estudios Transversales , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Longevidad , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
15.
Biol Psychiatry Glob Open Sci ; 3(1): 139-148, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36712562

RESUMEN

Background: Childhood sleep problems are common and among the most frequent and impairing comorbidities of childhood psychiatric disorders. In adults, sleep disturbances are heritable and show strong genetic associations with brain morphology; however, little is known about the genetic architecture of childhood sleep and potential etiological links between sleep, brain development, and pediatric-onset psychiatric symptoms. Methods: Using data from the Adolescent Brain Cognitive Development Study (n Phenotype = 4428 for discovery/replication, n Genetics = 4728; age 9-10 years), we assessed phenotypic relationships, heritability, and genetic correlations between childhood sleep disturbances (insomnia, arousal, breathing, somnolence, hyperhidrosis, sleep-wake transitions), brain size (surface area, cortical thickness, volume), and dimensional psychopathology. Results: Sleep disturbances showed widespread positive associations with multiple domains of childhood psychopathology; however, only insomnia showed replicable associations with smaller brain surface area. Among the sleep disturbances assessed, only insomnia showed significant heritability (h 2 SNP = 0.15, p < .05) and showed substantial genetic correlations with externalizing and attention-deficit/hyperactivity disorder symptomatology (r G s > 0.80, ps < .05). We found no evidence of genetic correlation between childhood insomnia and brain size. Furthermore, polygenic risk scores calculated from genome-wide association studies of adult insomnia and adult brain size did not predict childhood insomnia; instead, polygenic risk scores trained using attention-deficit/hyperactivity disorder genome-wide association studies predicted decreased surface area at baseline as well as insomnia and externalizing symptoms longitudinally. Conclusions: Findings demonstrate a distinct genetic architecture underlying childhood insomnia and brain size and suggest genetic overlap between childhood insomnia and attention-deficit/hyperactivity disorder symptomatology. Additional research is needed to examine how genetic risk manifests in altered developmental trajectories and comorbid sleep/psychiatric symptoms across adolescence.

16.
J Alzheimers Dis ; 91(3): 999-1006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36530088

RESUMEN

BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS: We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Actividades Cotidianas , Fuerza de la Mano , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Hipocampo
17.
Artículo en Inglés | MEDLINE | ID: mdl-35031524

RESUMEN

BACKGROUND: Owing to high heterogeneity and comorbidity, the shared and unique neural mechanisms underlying the development of anxiety and major depressive disorders remain unclear. Using a dimensional model describing shared versus unique symptoms associated with anxiety and depression, this study investigated how longitudinal changes in symptom dimensions relate to threat neurocircuitry. METHODS: Participants were 18- to 19-year-olds (N = 279, 186 females) who completed self-report measures of anxiety and depression at baseline and at 10, 20, and 30 months. Linear slopes of symptom dimensions of general distress, fear, and anhedonia-apprehension were estimated through a trilevel factorial model. In addition, functional magnetic resonance imaging scans were obtained while participants performed Pavlovian fear conditioning tasks at baseline and 30 months, including three phases of fear acquisition, extinction, and extinction recall. Neural responses in regions of interest related to threat neural circuitry (e.g., amygdala, ventromedial prefrontal cortex, and subgenual anterior cingulate cortex) were extracted. RESULTS: Linear mixed models used to estimate relationships between changes of symptom dimensions and neural responses revealed two major findings: 1) greater neural responses to threatening stimuli during fear acquisition at baseline were associated with a greater increase in fear symptoms during the 30-month prospective period; and 2) elevated neural responses to the extinguished stimulus during extinction recall at 30 months were negatively associated with changes in general distress, suggesting that greater increases in general distress are associated with larger deficits in extinction memory. CONCLUSIONS: These findings improve our understanding of pathophysiological pathways underlying the development of anxiety and depression, while separating symptom dimensions that are shared versus unique between the two disorders.


Asunto(s)
Trastorno Depresivo Mayor , Femenino , Humanos , Depresión , Estudios Longitudinales , Estudios Prospectivos , Extinción Psicológica/fisiología , Mapeo Encefálico , Ansiedad
18.
Alzheimers Dement ; 19(1): 261-273, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35357079

RESUMEN

HYPOTHESIS: We hypothesized that Lomecel-B, an allogeneic medicinal signaling cell (MSC) therapeutic candidate for Alzheimer's disease (AD), is safe and potentially disease-modifying via pleiotropic mechanisms of action. KEY PREDICTIONS: We prospectively tested the predictions that Lomecel-B administration to mild AD patients is safe (primary endpoint) and would provide multiple exploratory indications of potential efficacy in clinical and biomarker domains (prespecified secondary/exploratory endpoints). STRATEGY AND KEY RESULTS: Mild AD patient received a single infusion of low- or high-dose Lomecel-B, or placebo, in a double-blind, randomized, phase I trial. The primary safety endpoint was met. Fluid-based and imaging biomarkers indicated significant improvement in the Lomecel-B arms versus placebo. The low-dose Lomecel-B arm showed significant improvements versus placebo on neurocognitive and other assessments. INTERPRETATION: Our results support the safety of Lomecel-B for AD, suggest clinical potential, and provide mechanistic insights. This early-stage study provides important exploratory information for larger efficacy-powered clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Resultado del Tratamiento , Método Doble Ciego , Biomarcadores
19.
Front Neurosci ; 16: 1040085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466170

RESUMEN

Autism Spectrum Disorder (ASD) is a developmental condition characterized by social and communication differences. Recent research suggests ASD affects 1-in-44 children in the United States. ASD is diagnosed more commonly in males, though it is unclear whether this diagnostic disparity is a result of a biological predisposition or limitations in diagnostic tools, or both. One hypothesis centers on the 'female protective effect,' which is the theory that females are biologically more resistant to the autism phenotype than males. In this examination, phenotypic data were acquired and combined from four leading research institutions and subjected to multivariate linear discriminant analysis. A linear discriminant model was trained on the training set and then deployed on the test set to predict group membership. Multivariate analyses of variance were performed to confirm the significance of the overall analysis, and individual analyses of variance were performed to confirm the significance of each of the resulting linear discriminant axes. Two discriminant dimensions were identified between the groups: a dimension separating groups by the diagnosis of ASD (LD1: 87% of variance explained); and a dimension reflective of a diagnosis-by-sex interaction (LD2: 11% of variance explained). The strongest discriminant coefficients for the first discriminant axis divided the sample in domains with known differences between ASD and comparison groups, such as social difficulties and restricted repetitive behavior. The discriminant coefficients for the second discriminant axis reveal a more nuanced disparity between boys with ASD and girls with ASD, including executive functioning and high-order behavioral domains as the dominant discriminators. These results indicate that phenotypic differences between males and females with and without ASD are identifiable using parent report measures, which could be utilized to provide additional specificity to the diagnosis of ASD in female patients, potentially leading to more targeted clinical strategies and therapeutic interventions. The study helps to isolate a phenotypic basis for future empirical work on the female protective effect using neuroimaging, EEG, and genomic methodologies.

20.
Dev Cogn Neurosci ; 57: 101145, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35944340

RESUMEN

The human cerebral cortex undergoes considerable changes during development, with cortical maturation patterns reflecting regional heterogeneity that generally progresses in a posterior-to-anterior fashion. However, the organizing principles that govern cortical development remain unclear. In the current study, we characterized age-related differences in cortical thickness (CT) as a function of sex, pubertal timing, and two dissociable indices of socioeconomic status (i.e., income-to-needs and maternal education) in the context of functional brain network organization, using a cross-sectional sample (n = 789) diverse in race, ethnicity, and socioeconomic status from the Lifespan Human Connectome Project in Development (HCP-D). We found that CT generally followed a linear decline from 5 to 21 years of age, except for three functional networks that displayed nonlinear trajectories. We found no main effect of sex or age by sex interaction for any network. Earlier pubertal timing was associated with reduced mean CT and CT in seven networks. We also found a significant age by maternal education interaction for mean CT across cortex and CT in the dorsal attention network, where higher levels of maternal education were associated with steeper age-related decreases in CT. Taken together, our results suggest that these biological and environmental variations may impact the emerging functional connectome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...